Discriminating direct and indirect
connectivities in biological networks
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background

 Direct and indirect interactions are pervasive in all networks.
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 Despite concurrent advances in quality and guantity of data as
well as computing resources and algorithms, a fundamental
reverse engineering bottleneck is the ability to discriminate

between direct and indirect connections.
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« The inability to disentangle these interactions hampers reverse

engineering progress.
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background

« A number of theoretical approaches have been proposed to
overcome this hurdle , but the ability to experimentally verify
the conclusions drawn by reverse engineering tools remains
paramount.
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 we adopt the notions of abstraction, emulation, benchmarking,
and validation in the context of discovering features specific to

this family of connectivities.
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Methods

« Mammalian Cell Culture and Transfections
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 Fluorescence Microscopy
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* Flow Cytometry

S kel IR €S

« Modular Response Analysis

o LAk IR S 43K

« Resampling

. HERH

““ K j’4 \‘é]’

: i AT
Vo > A

MUAZMONG AGRICULTURAL UNIVERSITY



Results

* Design and Assembly of the Benchmark Synthetic Regulatory
Networks
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 Validation of the Synthetic Gene Network Behavior
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» Modular Response Analysis
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» Reverse Engineering of the Benchmark Topologies Using

Resampled Single-Cell Data
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Design and Assembly of the Benchmark Synthetic Regulatory Networks
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Design and Assembly of the Benchmark Synthetic Regulatory Networks
U B BRI 4% R 4 O W 5 41

ItTA .y RheoDimer = .
Hc fAdox it f&PonA
[tTA—» RheoReceptor _ fit fAPonA
»RheoDimer > 7
TagCFP — RheoActivator

« The activity of the three nodes X, Y, and Z can be quantified by the output fluorescent
proteins TagCFP, TagYFP and mKate2.
XY, ZZAN RUI0E AT RS S48 HE 1R 3k 5% ' i 1 TagCFP, Tag Y FP, mKate2 i & Ak,

« To achieve direct activation of node Z by node X, the node X produces the RheoSwitch
proteins in addition to TagCFP and rtTA.
AT s A Z 25, X1 5 HH TagCRP, T AR 1 78 7= 42 RheoSwitch 2 1

 For the cascade motif, the translation of RheoSwitch dimer protein is prevented by nonsense
mutation.
RheoSwitch — 54 8 [ 1A B I T8 CHRAR I T BOBBEL Lk, AT SE LR 45 44 1) 52 F o

« the activation of node Y by node X depends on doxycycline, Z requires an ECR agonist such
as Genostat or ponasterone A (PonA).
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Validation of the Synthetic Gene Network Behavior
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Fig. 2. Validation of the coherent feed-forward

architecture. To validate the circuit behavior we Fig. 3. Validation of the caxade architecture. To
tested all combinations of the two small molecules. validate the drcuit behavior we tested all combinations
The result analyzed by fluorescence microscopy of the two small molecules. The result analyzed by
(4) and flow cytometry (B). fluorescence microscopy (4) and flow oytometry (8).
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Validation of the Synthetic Gene Network Behavior
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» the circuits were transfected in human embryonic kidney cell line (HEK293).

o [ALEAE NZRIRNGE A 2R (HEK293) % G HE 4T 5256

 In the feed-forward loop, node X activity is represented by the constitutively produced
fluorescent protein TagCFP and is observed regardless of the ligand conditions (Fig. 2A). The
addition of doxycycline, which enables X-to-Y interaction by activating the synthetic
transactivator rtTA, results in production of the TagYFP fluorescent protein (Fig. 2A). The
activation of node Z is mediated by the active form of RheoSwitch dimer, which is produced
by both nodes X and Y. Due to the constitutive activity of node X, PonA is sufficient to
activate node Z in the feedforward loop (Fig. 2A).
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 In the cascade motif, sequential activation of node X and node Y are necessary for node Z
activation. Thus, mKate2 is only observed when Dox and PonA are present (Fig. 3A).
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Validation of the Synthetic Gene Network Behavior
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a b » We performed sensitivity analysis of the output node Z
Cascade protein concentration against the mRNA species of
. YFP qProtem} "r'FP (Protein) ) nodes X andY .
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I HTSES .
» We observe that, in the feed-forward loop, where node
X activates node Z in a direct manner as well as an
- . - - indirect manner, the cumulative sensitivity of the Z
E E _ node protein to MRNA species of node X was always
E mRNA_X mRNA_Y mRNA_Z '% mRNA_X mRNA_Y mRNA_Z higher than that of node Y (SIAppendix, Fig. S3).
@ o Conversely, in the cascade, where node X only activates
gs 4 MIREISS (Frovein) s 4 WRalSs (Froein node Z indirectly through node Y, the production of
o e node Z protein was more sensitive to the node Y mRNA.
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Figure 53. [n silico sensitivity analysis of the model benchmark networks. Using the mathematical model of the
synthetic networks as presented in Supplementary Figure 1, sensitivity analysis of YFP and mKate? protein

against mRNA species of each node was performed.
» This hypothesis intriguing scenario where the properties and outcome of signal propagation after custom

perturbation experiments can be exploited toward distinguishing direct from indirect connectivities.
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Modular Response Analysis
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» We first tested the efficacy of siRNA and
calibrated the perturbation dosage against the
feed-forward loop architecture plasmid (SI
Appendix, Figs. S4-S6; quantitative RTPCR
results in SI Appendix, Fig. S7). Selecting the
perturbation magnitude.
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Modular Response Analysis
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«  Specifically, as illustrated in (_I=&SI Appendix, Fig. S8A), we selected 1pmol as “high” perturbation and 0.1 pmol as
“low”. we performed a node-wise perturbation of the feed-forward circuit using the siRNAs that target each node
supplemented with scrambled siRNA to control for the total mass.

«  ME1pmolfEyEEahE, 0.1pmol v ksl E . BAT — AN B A IR EEEAT AHIASFISIRNAR AT 1545 4 node-wise
@i AEM v

« For node X, a decrease in TagCFP is observed only after direct perturbation; for node Y, a decrease in TagYFP is
observed after perturbation of nodes X andY; and for node Z, a decrease in mKate2 is observed after perturbationof
nodes X, Y, and Z (SI Appendix, Fig. S8B).
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Modular Response Analysis
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\ » Graphical representation of the complete circuit
topology derived from population-level statistics
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\ » Monte Carlo error propagation analysis of modular
response analysis
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Reverse Engineering of the Benchmark Topologies Using Resampled Single-Cell Data
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Fig. 4. Resampling the single-cell flow cytometry data after node-wise perturbations. Forty-eight h after siRNA perturbation, the expression level of the fluo-
rescence reporters that represent nodes X, ¥, and Z (TagCFP, TagYFP and mKate2, respectively) are measured using flow ortometry. To calculate the mean fluo-
rescence of each population and the associated uncertainty, bootstrap resampling was performed. The resulting probability distributions of the resampled mean
before perturbation (empty) and after perturbation (color-filled) are shown for the feed-forward loop (4-C), and the cascade (D—F). The colors of the peaks indicate
the relative strength of the suppression applied (gray is used to indicate the low and purple the high perturbation). (4) The graphical representation of the X-node
perturbation and the corresponding nodal responses using the feed-forward architecture. Probability distributions are composed of bootstrapped mean of the
fluorescence reporters TagCFP, TagYFP and mKate?2 (left to right) following perturbations to node X at two different siRNA concentrations. Color of the peak
indicates the relative degree of suppression. (B and C) The graphical representation of the ¥- and Z-node perturbatiors and the corresponding nodal responses
using the feed-forward architecture. (O—F) Results from the same process using the cascade architecture.
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Reverse Engineering of the Benchmark Topologies Using Resampled Single-Cell Data
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Fig. 5. Reverse engineering of the benchmark topologies
using resampled single-cell data. (4 and B) The complete
reconstruction of the network with modular response anal-
ysis performed after two perturbations. For every set of
subsampled means that make up the probability distribu-
tiors, the MRA results along with the 95% confidence in-
terval of the distribution are plotted as a 1D scatter plot.
(C and D) The graphical representation of the reconstructed
synthetic networks. (E and F) To probe the effect of response
coefficient change due to perturbation magnitude shift we
calculated the difference between coefficients of equivalent
edges (C and D). The emor bars were obtained wsing a

propagation of emror among the pair of local response co-
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Reverse Engineering of the Benchmark Topologies Using Resampled Single-Cell Data

ik FH P20 B S EER A AT R 0 0 38 1) TR

a Feedforward C Feedforward

3
-1 -0.5 a +0.5 +1 +1.5 +2
€ 25 i . . !
ﬁ 5 |”i Low Med. |High
| Ar
3 ¥x i
1 - =
W . iah ed Low
2 “l'- H M
=
(=] 9 | 'ﬂrzx +
& N, O e + .................
& 05 High
8 Argy .
5 0
Low Med
-0.5
Tyx Tzx
O Low Perturbation
. Medium Perturbation
@ High Perturbation
b Cascade d Cascade
> 157 /o oor Goes o ws w ms @
= 25 Low .. Low High| Med.
@
g 5 EH
2 0.98 ® . +
5 2 i L= = R
S 1.5 Wl Low High Med
Q 1.88 . 018 Ar
2 4 L™ 2 =13
E 0.5 . Low |High Med.
0 b ar,
5 O T | 2y ~HE-
5 -05
A r= 2,000
Tyx fzx Tzy

Figure S13. Reverse engineering of the benchmark topologies using resampled single-cell data. The complete
reconstruction of the feedforward (a) and cascade (b) with modular response analysis performed after three
different magnitudes of perturbations. For every set of subsampled means that make up the probability
distributions. local response coefficients are calculated. This process cyele is performed 2.000 times, and the
resulting local response coefficient distribution is plotted as a 1 dimensional scatter plot, and the corresponding
graphical representation of the reconstructed synthetic networks with the mean values of these distributions are
shown on the right (From top to bottom: low, medium and high perturbations, respectively). After reconstruction
of the synthetic networks using three distinct sets of systemic perturbation, the change in response coefficients of
equivalent edges are calculated after subsequent decrease in perturbation magnitude for feedforward (d) and
cascade (d). The response coefficients recovered after the strongest perturbation sets (*High™) are used as a

¢ \ standard dewviations of the original distributions.
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Results

* Rooted in metabolic control analysis, Modular Response Analysis (MRA) uses steady state data obtained
from node-wise perturbation to express the network in terms of pair-wise interaction sensitivities.

o JRFAREHESHI T, BHERIm R AT (MRA) B Mnode-wised 2175 21| B R S EHE iR 1A H
pair-wisesZ H.4E B .

» the experimental procedure consists of the following steps: (i) measure the steady-state xi corresponding
to the unperturbed set of inputs pi, (ii) perform a perturbation to each pi individually and measure the new
steadystate xi’, (iii) calculate the global response coefficients using the steady-state data, and (iv) convert
global response coefficients to local response coefficients by inversion of the global response matrix

» To increase our confidence in predictions we developed a technique based upon bootstrapping, an
alternative to the sample statistics obtained from an aggregate population.

o ONHINETEEME TR T —FhEE T bootstrapping  (FRELIEE) 1 5B — N E A BUE REA bk

« Fig S13 To qualitatively probe our observations we developed a phenomenological model of the
architectures. we analytically calculated the local response coefficients under low and high perturbations
and we indeed confirmed the divergent shifts in interaction strengths.
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Conclusion
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