STOCHASTIC ACTIVATION OF A DNA
DAMAGE RESPONSE CAUSES CELL-TO-CELL

MUTATION RATE VARIATION
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Question?

o Most damage events are reversed by active repair systems, but the ones that
escape repair can cause cell death or mutations. An infriguing question is

o Specifically, the classic perspective suggests that failures to repair reflect the intrinsic
error rate of the repair enzymes, for example, because of the random search for
lesions.

o Alternatively, most failures could occur in an error-prone subpopulation of cells (3, 4)
in which repair is compromised by fluctuations in the abundances of the repair
proteins



Subjects

A o The Ada protein functions not only in the direct repair of alkylated
(kEEAL) DNA but also as the transcriptional activator of the
MMS\':\ adaptive response (Fig. A).
MePO,
me-N-Ada  N-Ada o Specifically, ada expression is induced by methylated Ada (meAda)
\‘ j after irreversible methyl transfer from DNA phosphoftriester (#EfR =g
. :d and OtMeG lesions onto cysteine (EEEFR) residues of Ada.
Ada | ada
MMS({\\ \ o Because Ada is present in low numbers before damage, this
D MeG positive-feedback gene regulation may amplify stochastic

fluctuations and create cell-to-cell heterogeneity in the repair
C-Ada me-C-Ada system.



Results
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Results

g © Atlow-to-infermediate MMS

‘ concentrations (<200 mM MMS), cells
showed random unsynchronized pulses
of Ada expression (Fig. 1D).

750 uM MMS

o At higher MMS concentrations, most
cells rapidly induced a persistent and
uniform response (Fig. 1E). However, 20

to 30%o0f cells were lagging even at
saturating MMS.
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o Late-responding cells activated the

response with @
per cell cycle. (Fig. F)

rate of once

o Distribution of ada protein in live cells

without MMS. (Fig. G)
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o Most cells reliably launch the response
with just one or two Ada molecules to

sense the damage and to induce ada
expression.
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o Sections of time traces showing distinct steps in
Ada-mYPet expression rates during response
activation upon 200 mMMS treatment, deactivation
after MMS removal, and stochastic activation and
deactivation transitions with 100 mM MMS.

o Vertfical lines indicate cell divisions. Histograms
show number of frames spent in the expression rate
states.
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10 mM MMS
H15 g "
20|l s o Because failure to trigger the adaptive
ok Hﬂli ! 7 response seems to be the result of a
o 200 400 600 300 G o e complete lack of Ada molecules in @
Fluorescence (a.u.) 2 - - o o .
fraction of cells, it should be possible to
TR reduce this fraction with a slight
D .o Po-o—o b increase in the average abundance of
- Ada.
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o The extremely low abundance of Ada
can thus be advantageous to the
population as a whole, which implies
that the repair system faces a trade-off
to repair exogenous alkylation
damage without infroducing harmful
effects.



More—mutation rates
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%50 ;‘;_' response therefore leads to an error-
Sl - prone cell subpopulation that does not
20 oF efficiently repair DNA alkylation damage
“’fz R £ and accumulates mutations.
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Fig. 4. Increased binding of mismatch recognition protein MutS in cells with delayed Ada response.
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