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Background 

Gene  function 
 
• GRNs 

 
• Coexpression networks 
 
 

Transcriptome  and proteomics 



Material and Method 

• Materials 
• 23 tissues spanning vegetative and reproductive stages of maize development  

 

• Methods 
• Transcriptome: mRNA-seq 

• Proteome:Electrospray ionization tandem mass spectrometry  

 
 

 



Comparison of transcriptome and proteome data sets. 

 

• Reproducibility of the biological replicates 
• Transciptome : 0.9 

• Proteome :  0.84 

• Phosphoproteome  :0.7 

 

• The number of genes 
• Transcripts were from 62,547 genes， 

• Proteins were from 6946 genes， 

• Phosphoproteins were from 5587 genes 

 

 



Fig. 1Comparison of 
transcriptome and proteome 
data sets. 
(A) FPKM distribution of mRNA 

abundance (red). FPKM 
values of transcripts 
corresponding to quantified 
proteins (blue), 
phosphopeptides (green), 
syntenic genes conserved 
between maize and sorghum 
(gray), and nonsyntenic 
genes (black) are shown. 
Data are the average 
expression from the 23 
tissues profiled.  

 

Comparison of transcriptome and proteome data sets. 



Comparison of transcriptome and proteome data sets 

 

Conclusion: 
transcripts from many genes may not produce 
proteins 
 
 
 

Fig B 
 Percentage of quantified 
mRNA and proteins in the 
annotated filtered (high-
confidence gene models) 
and working (all gene 
models) gene sets.  
Fig C 
 Breakdown of detected 
mRNA and proteins, 
based on annotations.  
 



Comparison of transcriptome and proteome data sets 

Fig D 

• Percentages of all annotated genes that 
are transcribed and percentages of all 
transcribed genes that are translated, for 
both the syntenic and nonsyntenic gene 
sets. 

 
Conclusion: 
• A greater frequency of protein expression is a 

possible mechanistic explanation for the eightfold 
enrichment of genes responsible for visible 
mutant phenotypes among syntenically 
conserved genes in maize  
 



• Whether transcriptome-based networks predict the same 
relationships as proteome-basednetworks？ 

 

• NEXT ：coexpression networks  and GRNs 

 



 

 

 

 

• Feature:undirect 

• Node:genes connected on the basis of highly correlated expression patterns 

• Method:Spearman correlations ， WGCNA 

• Threshold---correlation score >0.75 

 

 
 

Fig A 
Hypothetical undirected 
coexpression subnetwork 
showing conserved (solid 
lines) and nonconserved 
(dotted lines) coexpression 
edges between mRNA and 
protein networks.  

coexpression networks 



Compare the mRNA and protein based coexpression networks 

• Calculate edge conservation  

• Found 6.1% edges were conserved in both networks 

 

Fig B  
Venn diagram depicting edge 
conservation (solid lines in Fig. 2A) 
between the two coexpression 
networks.  
 



Coexpression network analyses. 

 

• Categorize the hub genes as the nodes in 
the top 10th percentile for most edges 
• The majority（85%） were not shared 

between the mRNA and protein 
coexpression networks 

 
Fig C  
Number of edges a given gene (node) has in the protein (x axis) 
and mRNA (y axis) coexpression networks. Nodes above the 
90th percentile for the number of edges are considered hubs 
and are colored according to whether they are hubs in the 
protein (blue) or mRNA (red) network or both (green). Black 
dots represent nonhub nodes. 
 



Categorical enrichment analysis of coexpression modules. 

 

• 35% protein-specific, 27% mRNA-specific, and 38% shared 

Fig  
Coexpression modules were 
determined by WGCNA and 
functionally annotated using MapMan 
categories. Categories enriched 
(Benjamini-Hochberg adjusted P value 
≤ 0.05) in one or more modules are 
represented by vertical bars and 
labeled with the bin number and 
name. For each category, the genes 
accounting for the enrichment were 
extracted separately from mRNA and 
protein modules. Only functional 
categories with at least 20 genes are 
shown. Colored bars represent the 
proportion of genes in each enriched 
category that are specific to one 
network (mRNA, red; protein, blue) or 
shared between the networks (green). 
 



Coexpression network analyses. 

• that transcript- and protein-based coexpression networks yield 
differing predictions of gene relatedness and function 

 

the discrepancy between transcriptome and proteome coexpression 
networks  

• the limited correlation between mRNA and protein abundance,  
• differing stabilities of mRNA and protein,  

• translational control 

• protein movement from the tissue of synthesis 



GRNs 

• Directed networks of TFs and their target genes 

 

 

 

Fig A  
Hypothetical GRN subnetwork depicting a TF 
regulator (square) and potential target genes 
(circle) quantified as mRNA (red) or protein 
(blue). GRN-specific and -conserved predictions 
are depicted by dotted and solid lines, 
respectively.  
 

method 
GENIE3  (an algorithm for the inference of GRN from expression data) 
•  random  forest machine learning  algorithm 
• DREAM4  and -5 GRN econstruction challenges 
 
 



 GRN analyses. 

Benchmarks: 
 
the homeobox TF KN1  
the bZIP TF Opaque2  

Fig B  
 Overlap of the true-positive predictions from the 
top 500 true GRN predictions for KN1 quantified as 
mRNA, protein, or phosphopeptide. True KN1 
targets were identified by Bolduc et al.  
 

44% of all corrected targets were specific to a 
single type of GRN 
  



GRN analyses. 

• there was low edge conservation between 
the GRNs , with the vast majority of edges 
being present in a single GRN. 
• Considering one million edges, 93% were 

present in a single GRN 

• the different accumulation patterns of 
mRNA, protein, and phosphorylation for a 
given TF result in disparate GRN 
predictions 



Further validation 

• Used 539 TFs regulators quantified as both mRNAs and proteins to 
reconstruct GRNs 

•  Different maize varieties (Mo17,B73) 

 

 



Combine  Multiple GRNs  
To consolidate two or three networks, a new network was generated using the union 
of all TF expression data from the single networks as regulator inputs into the network 
and the same set of 41,021 target transcripts. This results in a network with 
redundancy at the gene level for TFs regulators that were quantified with multiple data 
types. To alleviate this redundancy, and obtain a combined score for each TF-Target 
edge, the product of all redundant edges was taken. When only a single edge existed 
(i.e. theTF was only quantified in one data type) when combining two data types, the 
square of the edge score was taken. For the final combined network consisting of all 
three data types, if only one edge was present ,the edge score was cubed. If two edges 
were present, the product of the two edges was multiplied by the average of the two 
edges. 

For the phosphorylation data, the networks were constructed using phosphopeptide 
quantification but when combined, all phosphopeptides from a given protein were 
averaged in order to get phosphoproteinlevel information.  
 



Evaluate the GRNs 

ROC curves and precision-recall curves generated using known Kn1 
and O2 target genes for a mRNA-only GRN (red) and a fully integrated 
GRN built by combining mRNA, protein, and phosphoprotein data into 
a single GRN (blue). 
 



• Our comparison of transcriptome- to proteomebased dendrograms 
and coexpression networks showed little overlap at the gene level, 
even though the samples were classified similarly and had similar 
ontological enrichments. 

• The discovery that most protein-expressing genes are conserved and 
syntenic also was unexpected  

• Our findings highlight the importance of studying gene regulation at 
multiple levels. 



My summary 

• 此研究在各个角度说明转录组和蛋白组数据之间的低重合率，也进一步分析
了这种现象的原因。然后又在各个角度证明各组学数据构建的网络分析得到
的结果也是不完全一致的，具有互补性。十分具体的展现了不同组学整合的
必要性。 

 

• 然而此研究并未得到突破性的认识，后期应展示利用整合网络探索一些被遗
漏的功能基因。 

 

• 通过这篇文献，我对网络分析有了基本的认识。对于课题后期的数据深度分
析有了简单的思路。在获取了蛋白组的数据后，参照此文献运用网络分析的
方法来寻找功能基因。 

 

 

 


