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Abstract

Question:

Reverse genetic screens have driven gene annotation and target
discovery in model organisms. However, many disease-relevant
genotypes and phenotypes cannot be studied in lower organisms.

Research methods:

Here, we establish a reverse genetic approach based on highly
robust and sensitive multiplexed RNA sequencing of mutant
human cells. We conduct 10 parallel screens using a collection of
engineered haploid isogenic cell lines with knockouts covering
tyrosine kinases and identify known and unexpected effects on
signhaling pathways.
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Introduction

Forward and reverse genetic approaches have both been
crucial for elucidating fundamental biological processes as
well as identifying therapeutic targets.

One of the hurdles associated with large-scale reverse
genetics in human cells is the technical challenge to generate
large sets of individual, targeted mutants.

In this work, we exploit advances in parallel sequencing and
genome editing to revisit reverse genetics in human cells.



Materials and Methods

Cell lines

Reagents and stimulation of cells

RNA sequencing

Quantitative real-time PCR

Western blotting

RNA-seq data processing and alignment
Expression analysis



Results
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Fig A:Spearman correlations between replicates of expression
profiles in HAP1 cells measured by shallow RNA-seq.

Fig B:Data-based modeling of the effect of sequencing depth on
gene expression analysis.



Results

Result 1.

Expression profiles of replicate samples were strongly correlated,
indicating robust and consistent performance of the assay (Fig 1A).

Modeling of sequencing depth showed that measuring ~1 million
reads per sample was sufficient to identify nearly all the ~12,000
genes expressed in HAP1 cells (Fig 1B).
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Fig: Clustering of signature gene sets from polypeptide

and small molecule stimulations.



Result 2.

Although related signatures (e.g., interferons) contained genes in
common, they also contained gene subsets known to be specific
to the respective stimuli. This indicates that the resolution of
shallow RNA sequencing can capture not only broad responses
to perturbations, but can reveal nuances of signaling cascades as
well.
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Fig C: Supervised Stochastic Neighbour Embedding (tSNE)
clustering of all stimulated and unstimulated HAP1
wild-type and knockout cell lines.
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Fig D:Comparison of expression profiles of wild-type cells and HIF1A-KO
cells in response to DFOM stimulation.

Fig E:Same as in (D), except for WNT3A stimulus in CTNNB1-KO cells.
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Result 3.

Genes upregulated by DFOM and WNT3A were strongly reduced
in the HIF1A and CTNNB1 mutants, respectively (Fig 1D and

E),which validated that the previously defined signatures can be
exploited to functionally annotate genes using mutant cell lines.



Parallel reverse genetic screening of kinase knockout cells.
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Fig 1:0n top, cartoon illustrating the assembly of a collection of HAP1
knockouts using CRISPR/Cas9 technology. At bottom, scheme for
screening design showing that individual kinase KO cells are measured
along all relevant controls.

Fig 2:Spearman correlations between replicates of stimulated and
unstimulated wild-type and knockout cells in the transcriptomic screen of
16 96-well plates.

13



Used residuals to score individual cell lines’ responses to each
stimulus. This revealed several knockout-specific signaling
dependencies.
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Fig A:Responses of JAK1-KO cells to the ten selected stimuli.

Fig B:Showing detailed view of responses to FGF1 and IFNb/IFNg stimulation
of selected knockout cells. Bars indicate labeled mutants of FGFR and
JAK family members.

Fig C:Responses of FGFR1-KO cells to the ten selected stimuli.
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Result 4.

This finding is surprising as these three JAK family members have
been reported to contribute to a transcriptional response upon
stimulation with type | or type Il interferons (Rane & Reddy,
2000). Our results confirm a critical role for JAK1 in interferon
signaling and suggest a distinct function of this kinase compared
to the other two family members, at least in HAP1 cells.
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Fig: Comparison of response signatures in wild-type and
FGFR-KO mutant cells.



Result 5.

Studying the signature genes in more detail, we further noted
that loss of FGFR1 had a uniform effect on FGF1 signaling. In
contrast, in FGFR3 knockout cells, the attenuation was less
uniform. These observations highlight the complexity of FGF1
signaling and illustrate how the profiling platform can spark new
hypotheses even for well-studied pathways.



gRT-PCR validation
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Result 6.

Many other gene—stimulus combinations also resulted in subtle
reductions in signaling strength.

These experiments also confirmed another observation that
some mutant clones show aberrations in more than one

signaling pathway .



Discussion

contributions:

Present an approach for parallel reverse genetics of mutant human
cells based on shallow RNA sequencing, and demonstrate its suitability
for studying cellular perturbations.

Anticipate that the strategy of transcriptional screening of mutant cells
is generic and can be applied to study many other cellular systems
provided relevant reference/control signatures are measured.

The presented strategy can be deployed to address a multitude of
biological questions beyond the study of full knockout mutants.

limitations :

The resolution of shallow RNA-seq is not as high as obtained from
deeper sequencing protocols.

Furthermore, cellular changes that do not affect gene transcription, or
only very transiently, cannot be quantified using this method.

Envisioned applications include hit validation and targeted hypothesis
testing that are difficult to tackle through forward genetics.
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