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Background

* The development of an integrative genome-scale model : Holy Grail

rdiscovery of novel properties and emergmg behaviors

generating and testing predictable hypotheses

* Potentials
guiding experimentation

\accelerating the in—depth understanding of cellular physiology




Early work

* E-cell

a modular software environment for whole-cell simulation that
included organelle sub-models




More recently work

genome-scale simulations were performed to study complex
phenomena

* the emergence of anticipatory behavior during evolution 1n varying
environments

* the noise contributions of an inducible switch

* the effect of stochastic expression to metabolic variability




Our aim

To construct a phenomenological model for bacterial
organisms that integrates multiple layers of biological
organization.




Why E.coli

* The wealth of data and knowledge accumulated over the years
* The easiness to culture and manipulate experimentally

» Its importance in medical and biotechnological applications
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Knowledgebase Integrative Genome-Scale Models Biological
Modules
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Materials and Methods

* Data
* Cellular sub-models

* Model integration




Data

° gene expression

» from GEO, ASAP database

» constructed a gene expression compendium of 4,189 genes over 2,198 arrays that were
collected from 127 scientific articles

* signal transduction

» A total of 328 transcription factors (TFs) and 1,357 enzymes were identified by using
RegulonDB

»1dentify 151 instances of signal transduction systems (STSs)

* Phenomics compendium
» bacterial growth information for 616 of the arrays in ECOMAC by EcoPhe




Cellular sub-models

* Signal transduction model
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* Transcriptional model and EBA
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* Metabolic model and Transcription-based Flux Enrichment
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Model integration




Results

* Genetic and environmental gene expression diversity

* An integrative knowledgebase as a base to regulatory network enrichment
* Expression Balance Analysis

* Phenotypic predictions in an integrated model

* Model enrichment through targeted experimentation
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Genetic and environmental gene expression d
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An integrative knowledgebase as a base to regulatory network enrichment
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Expression Balance Analysis
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Phenotypic predictions 1n an integrated model
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Model enrichment through targeted experimentation

» Ganetic perturbations
= Environmental perturbations
= Genetic and emvironmental perturbations
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Discussion

* Advantage

»the creation of a signal transduction network (EcoST)

»1ts integration to the transcriptional and metabolic network through constraint modeling

* Disadvantage
»Coverage

»the severe bias to negative samples in the ground truth




Inspiration

* Binding site

* Funtion




Thanks for your attention
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