Syntrophic exchange in synthetic microbial communities

报告人: 孙祎慧

Background

- cooperation+competition→stability,maintenance and longevity
- general principle?? (microbial ecology, engineering synthetic microbiomes)

exchange of essential metabolities(metabolic crossfeeding)

 amino acid exchange → gain new insights into basic principles in metabolic crossfeeding

Procedure

- pairwise syntrophic communities
- three-member synthetic consortia
- 14-member community
- comparative genomic analysis of amino acid biosynthesis

Pairwise Syntrophic Communities

- 14 mutant strains(auxotrophic phenotype of 1 of 14 essential amino acids)
- grow only when supplemented with each amino acid needed
- 91 possible pairwise syntrophic interactions
- M9-glucose minimal media for 84h

Metabolic crossfeeding in syntrophic communities

Three-member Synthetic Consortia

- 91 double-amino acid auxotrophic derivatives
- grow in the presence of extracellular supplementation of both needed amino acid
- 364 possible three-member syntrophic consortia (MF, MK, FK)
- M9-glucose minimal media for 84h

Three-member syntrophic consortia with each strain being auxotrophic for two amino acids

Comparison of three-member syntrophies composed of double auxotrophs against two-member composed of single auxotrophs

three-member dynamic model

$$\frac{dX_1}{dt} = \frac{X_1}{X_1 + \beta} \cdot \min(c_{1,2}X_2, c_{1,3}X_3) \left(\frac{1 - (X_1 + X_2 + X_3)}{k}\right),$$

$$\frac{dX_2}{dt} = \frac{X_2}{X_2 + \beta} \cdot \min(c_{2,1}X_1, c_{2,3}X_3) \left(\frac{1 - (X_1 + X_2 + X_3)}{k}\right),$$

$$\frac{dX_3}{dt} = \frac{X_3}{X_3 + \beta} \cdot \min(c_{3,1}X_1, c_{3,2}X_2) \left(\frac{1 - (X_1 + X_2 + X_3)}{k}\right),$$

14-member community

- partial syntrophy (MK-HF) to strict syntrophy (MF-MK-HF)
- test the predicted reduction from partial to strict syntrophy by devising a synthetic consortium using the 14 monoauxotrophs
- dynamic model

$$\dot{X}_{i} = \frac{X_{i}}{X_{i} + \beta} \left(\sum_{j=1, j \neq i}^{14} c_{ij} X_{j} \right) \left(\frac{1 - \sum_{j=1}^{14} X_{j}}{k} \right)$$

- test 13-member consortia(probe the structure of the syntrophic network)
- R、K、M、T(dominant strains)

Dynamics of a 14-member syntrophic consortium

Comparative Genomic Analysis Of Amino Acid Biosynthesis

Hypothesize

 Amino acid exchange may be an important property across many microbial communities in the natural biosphere

Amino acid biosynthesis in the microbiome

Summarize

- Flaw:
- 1. It's better for the author to probe the syntrophic interactions of the 12-member consortia and the 11-member consortia besides that of the 13-member consortia.
- 2. It's better for the author to search the exchange of other metablioties containing nucleotides and so on.
- 3. It's better for the author to use other Genus strains to verify the conclusion .

Summarize

- Conclusion: The significant syntrophic interactions is dominated by four amino acid including M、R、K、T.
- Enlightment: The construction of the biological model can not only suggest the principles of the biological interactions but also be verified by the experiments.

Thank You