Universal distribution of component frequencies
In biological and technological systems
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* The first category invokes random multiplicative
processes recently exemplified by the

preferential attachment model of growing
networks

* The second category of models invokes

heterogeneity of functional roles of individual
components
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529 bacterial genomes and 44,283 prokaryotic
orthologous gene families

1,832 reactions/enzymes connected to each
other by 3,118 direct and 49,168 direct+indirect
dependencies.

192,392 packages on 2,047,796 computers

33,473 packages, 157,667 direct, and 2,439,011
total dependency relations
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 http://tuvalu.santafe.edu/~aaronc/powerlaws.

Fitting a power-law distribution

This function implements both the diserete and continuous maximum likelihood
estimators for fitting the power-law distribution to data, along with the goodness-of-fit
based approach to estimating the lower cutoff for the scaling region. Usage information is
included in the file; type "help plfit’ at the Matlab prompt for more information.
plfit.m (Matlab, by Aaron Clauset)

plfit.r (R, by Laurent Dubroca)

plfit.py (Pvthon, by Adam Ginsburg)

plfit.e (C++, by Wim Otte; includes plvar.c)

plfit.c (C++, by Tamas Nepusz)

plfit.py (Python, by Joel Ornstein)
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* Kaep(1) counts the packages that require
Installation of the package i at the first step of this
multistep process

» Kdep(l) counts the packages that do so at any step

* Kkdep(l) counts enzymes located one step below (or
above) it in this hierarchy

« Kadep(l) of the enzyme i is given by the total
number of enzymes in this minimal pathway
located downstream from it for anabolic enzymes
(or upstream from it for catabolic enzymes)
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Fig. 2. Components’
frequencies f (y axis)
are positively
correlated with their
total (direct + indirect)
dependency degrees
Kdep (x axis) for both
metabolic enzymes (A)
(Spearman’s rs = 0.30)
and Linux packages (B)
(Spearman’s rs = 0.47).
The black lines and
symbols show the
geometric averages of
f in each logarithmic
bin of Kdep.
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Fig. 3. Probability distributions of
direct (kdep; A) and total (Kdep; B)
dependency degrees for metabolic
enzymes (blue diamonds) and
Linux packages (red circles).
Power-law fits to direct degree
cumulative distribution give —2.08
for metabolic enzymes and —-1.91
for Linux packages, and are both
consistent with the —2.0 scaling law
(solid line in A). Power-law fits to
direct degree cumulative
distribution give —1.5 for metabolic
enzymes and —1.56 for Linux
packages, consistent with the
mathematically derived —1.5 scaling
(solid line in B).
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* one Is optimized by nature over billions of
years of evolution

* The other Is designed by a distributed
population of human software engineers
over the past several decades
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Yeast protein interaction network
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« An important caveat in applying the N, =N*/2
relationship is that N counts only those components
that are directly or indirectly connected to the core
by the functional dependency network.

« To reconcile the apparent stability of Nc with
unlimited growth of N, one recalls that continuing
expansion of N Is caused by either nonfunctional
(prophages or transposable elements) or extremely
niche-specific gene families—both are likely to be
disconnected from the core and hence will not
contribute to growth of Nc.



* A more systematic analysis of similarities
and differences between different
versions of biological and technological
complex systems will have to await future
studies.






