Universal distribution of component frequencies
In biological and technological systems

R A e

2013711 H 13

915

. %}i‘&ilﬁl%scalefree iR e —E A
ARG, KEHTAERB LB ES,

T S ey '5%%%7@“'? FAh S S K E &S
XU A K EIESS T SN “HEECN

N7, A ESE AT BE E RS éﬁh’“

= %é&ﬁﬁ X — e U I AZ N 45 2 o]
FEf), b, FEAIX RN 24 E 2
TR EE M 2%

158
At (power-law distribution)

» 19324F, MM KRZAE S 2 E K ZipfE 7t
o BRI R, R B S B]
I A R 42 B R BN R HES, U4
A PR H BRI R 58 R 44 R PR LR
FAERB R R ER: P()~rv(-a) , XFf

4

AR N ZIpF e e 5

* The first category invokes random multiplicative
processes recently exemplified by the

preferential attachment model of growing
networks

* The second category of models invokes

heterogeneity of functional roles of individual
components

MBI 2

529 bacterial genomes and 44,283 prokaryotic
orthologous gene families

1,832 reactions/enzymes connected to each
other by 3,118 direct and 49,168 direct+indirect
dependencies.

192,392 packages on 2,047,796 computers

33,473 packages, 157,667 direct, and 2,439,011
total dependency relations

MBI 2

 http://tuvalu.santafe.edu/~aaronc/powerlaws.

Fitting a power-law distribution

This function implements both the diserete and continuous maximum likelihood
estimators for fitting the power-law distribution to data, along with the goodness-of-fit
based approach to estimating the lower cutoff for the scaling region. Usage information is
included in the file; type "help plfit’ at the Matlab prompt for more information.
plfit.m (Matlab, by Aaron Clauset)

plfit.r (R, by Laurent Dubroca)

plfit.py (Pvthon, by Adam Ginsburg)

plfit.e (C++, by Wim Otte; includes plvar.c)

plfit.c (C++, by Tamas Nepusz)

plfit.py (Python, by Joel Ornstein)

RS

ZH
I

7\

>

-
o

of genes
—i -
(=] (=]
w =

N

10
10'
0 02 04 06 08 1
frequency, f
10°
@ 10°
&
o 10°
(o]
* 10
10’
10 107 10" 10°
C frequency, f
10°
= 10"
Q
c
[+ V]
T 2
210
N'2=210
10.3 0 1 2 3 4 5
10 10 10° 100 10 10

rank

O

of packages

I

Lo =N W s oo

of packages

Tl

frequency, f

—

o
(4]
-3

-
fe=]
F

w

0

02 04 06 08

frequency, f

1

10
10
10
10
10
10
10
10:2
10

10° 10° 10 10° 10% 10"

0

frequency, f

10°

10
10"
10
10
10
10
10

10

. '
N O g A 0N

N'2-440

10°

10’

10° 10°

rank

10°

10°

2 A AR 5 R IEAH 5

* Kaep(1) counts the packages that require
Installation of the package i at the first step of this
multistep process

» Kdep(l) counts the packages that do so at any step

* Kkdep(l) counts enzymes located one step below (or
above) it in this hierarchy

« Kadep(l) of the enzyme i is given by the total
number of enzymes in this minimal pathway
located downstream from it for anabolic enzymes
(or upstream from it for catabolic enzymes)

frequency of use >

frequency of use &
[N N R N N -
COO0O0OOO0OO0O

Kdep

10’ 10° 10°

" total dependency degree

10' 10° 10° 10°
- total dependency degree

Fig. 2. Components’
frequencies f (y axis)
are positively
correlated with their
total (direct + indirect)
dependency degrees
Kdep (x axis) for both
metabolic enzymes (A)
(Spearman’s rs = 0.30)
and Linux packages (B)
(Spearman’s rs = 0.47).
The black lines and
symbols show the
geometric averages of
f in each logarithmic
bin of Kdep.

B /0 "= /2 , A
3MHRE R B 3o A o

Fig. 3. Probability distributions of
direct (kdep; A) and total (Kdep; B)
dependency degrees for metabolic
enzymes (blue diamonds) and
Linux packages (red circles).
Power-law fits to direct degree
cumulative distribution give —2.08
for metabolic enzymes and —-1.91
for Linux packages, and are both
consistent with the —2.0 scaling law
(solid line in A). Power-law fits to
direct degree cumulative
distribution give —1.5 for metabolic
enzymes and —1.56 for Linux
packages, consistent with the
mathematically derived —1.5 scaling
(solid line in B).

107}
107}
107}
107}
107°
107}
107}

—&— Metabolism
—&— |inux
= = = slope=-2

10°

10" 10° 10° 10
k b direct dependency degree

—&— Metabolism
—&— Linux
== slope=-1.5

10’ 10° 10° 10*
K - total dependency degree

w6

* one Is optimized by nature over billions of
years of evolution

* The other Is designed by a distributed
population of human software engineers
over the past several decades

. each

In a tree

tly

irec

component d

and

depends on one

downstream

component

only one

Yeast protein interaction network

<J

=

R =
5.0 C C -

1t0 tr " —

W o UOCL
._lDefObf“d
D -OnNn+="_NDO &
“CogleElac .
;n_lublweeSMS%
TSEZ559EEQ
— 5
s25=388588
—o L5 OEECEZT
ESoo0oo0oo0maca
([

*;;;;‘;: % %X 3¢ %X %
#*
LG

X xx

22K 202X M IO K AXAHKHHK A KKK LKA KA AKX X

X, g "XXX
i,

0

10 20
layer number

30

15

5 10
layer number

OO 20K X

X ORI
FOOROMEOM X X X
OO

02 M XA AN A AN AN XA XXX XK XX x

0

10 20
layer number

10 20
layer number

« An important caveat in applying the N, =N*/2
relationship is that N counts only those components
that are directly or indirectly connected to the core
by the functional dependency network.

« To reconcile the apparent stability of Nc with
unlimited growth of N, one recalls that continuing
expansion of N Is caused by either nonfunctional
(prophages or transposable elements) or extremely
niche-specific gene families—both are likely to be
disconnected from the core and hence will not
contribute to growth of Nc.

* A more systematic analysis of similarities
and differences between different
versions of biological and technological
complex systems will have to await future
studies.

