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Abstract

 The interest in studying metabolic
alterations in cancer and their potential
role as novel targets for therapyghas

been rejuvenated In rece years, A
 Here, we report the de ment bf the &

first genome scale net rk m\odel\oi
cancer metabolism -yalld‘atecj N
correctly identifying genes esse Nt I for %
cellular proliferation in' camcer cell lines.
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Background

the development of metabolite profiling technologies
and metabolic network databases

The interest in studying cancer metabolism has
recently grown

cancer cells modify their metabolism to me?t the
requirements of cellular proliferati@n, thus ,
facilitating the uptake and conv I«&gn o§ nutrlents
Into biomass

The observation that many types of Cdn

adapt their metabolism to fgcilitate bio

formation to enable proliferatian sugge§ that |t

may be possible to predict characteristic alterations

In cancer metabolisin via genome=scale

computatlonal:modellng approaches that\have been

successfully/ Used In the past to\predict the,
umetabolic state of fast growing micro orgar\\lsms



Method, steps

Reconstructing a human cancer metabolic
model

Predicting cytostatic anticancer targits
Predicting synthetic lethal g ’\e targets Kt

The targeting of both synti( |d Ietﬁa‘l genes ,

via comblnatlon therapy \.. \ u \&1, Q

' :
lethal partner is mactlvated In specn‘lc cancer

types leads to selective treatments
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Reconstructing a human cancer
metabolic model

* We Integrate the human metabolic
model of Duarte et al (2007) withgcancer
gene expression data, ut| (zing a\/arlant
of our recent computatjonal m!et’lod for
the automatic reconstr tlon\of uman ;
tissue metabolic mO'qiels ‘term ‘c l\{)\BA
(Model Building Algorlthm) NN
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1.we begin by assembling an initial core set of 197
metabolic enzyme-coding genes that are highly expressed
across 90% of all cancer cell lines in the NCI-60 collection

2.applying MBA, a minimal setof additional reactions from
the human metabolic model thatare needed to activate the
reactions associated with this initial cr%e set istadded,

obtaining a cancer metabolism model that is con,sistent' ’
3 4 %

3.The resulting cancer metabolic rjr!odel |Q&Iude5\772 A
reactions and 683 genes il \ ¢ B
T R

4.To validate the cancer network model gener ted we
analyzed it via FBA to predlct growth-supporting genes
whose knockdowp V\/‘OU|d sighificantly reduce\cellular
proliferatioh rate™ B Q
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Overall, we obtain a set of 199 growth-supporting genes,

which are reassuringly ranked as highly essential
based on shRNA gene silencing data (Luo et al,
2008) (Kolmogorov-Smirnov (KS) P-value0.0045;
Supplementary Figure S1). The refergfice shRNA data
set consists of a list of genes, rankegd ﬂ

survival rate of 12 cancer cell Ilne tert es genes
are knocked down, thus denotlng the gene
experimentally measured con't(lbutldn to\c;ﬁker
growth.
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Predicting cytostatic anticancer
targets

* To identify which of the above-
Identified growth-supporting genes
may be considered viable anticagcer
targets, we further aimed to predict .
whether their knockdd\w}n\is e\}\p*eé\t\ed S
to be toxic to non-dividing cglig.dr\ * «
damage the prolifera‘giqn of n\oﬁmal 4

cells.
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Cytostatic score

« Cytostatic score=
(KOatp/WTatp)(1-KOgrowth / WTgrowth)

* The gene knockdown eﬁec&)n gro‘\?vth rate
IS computed by applying onthe,
cancer model, denotlng Tgrowth qnd :

KOgrowth the growthofate befO{e\nd\aftér
the knockdown :
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Gene count
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Predicting synthetic lethal gene
targets

« To study synthetic lethal drug targets, we
systematically simulated all double gene
knockdowns in the cancer model. We;
assigned each gene pair with€a synergy
score, reflecting the addit\io?%a dropin,

. . A\ Y
proliferation rate below thd inimal rate *
achieved by its individyal single'k ‘-Qé‘lgd\z‘Wﬂs ‘

-
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« we find that they are sigini'ficantly'e \'ifc'h 2d 1

with genetic interactions betvxaeen the
correspondipgyfeast orthologs
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Synthetic score

* Synthetic score=

KOAB/min(KOA, KOB) :
« Specifically, denoting by KOA, KOB and
KOAB, the growth rates( lowing,the

Knockout of gene A, ge e B and thé \
joint knockout of ge-F\}es A ang \ <
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The targeting of both synthetic
lethal genes via
combination therapy

* To identify which of the synthetic lethal
genes may be further con idered for
combinatorial drug the ﬁes We |
further predicted Wheth r theﬁrqum‘t \
knockdown is expee(sed to be’ \ch for
non-dividing cells 6r'damage the :
proliferation of.normal cells
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The targeting of a gene whose
synthetic lethal partner is
Inactivated in specific cancer types
leads to selective treatments

* The specific targeting of a gene participating
INn a synergistic pair is especi lly app‘éallng
In tumors in which its inter g qene IS
specifically inactivated.

* We utilized genomic and traqsc
to infer gene mactlvatlo‘n across \g
cancers, which leads to the identification of
cancer type- speelflc targets based on the
predlcted synerglstlc gene pairs.
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A TCA cycle Glycolysis C Pentose phosphate pathway
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Discussion

» studied the predicted synergy between
the TCA cycle enzyme FH and the heme
metabolism pathway. \ X

* Beyond the prediction 0 A\@W pqtentlal
drug treatments, the mé ehng
approach presented,here'(ls I‘Td to.
open up many addltlbrbal exchi\g
possibilities in the near future.
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Conclusion

* In summary, the model presented here lays
down a fundamental computational
counterpart for interpreting the rapidl
accumulating proteomics anékmetabolomics,
data characterizing cancer, Retabali¢ |
alterations, and paves the%gy both for\* \

W kY 4 \
obtaining a systems leyel umders&t{ | cﬁng@f««
cancer metabolism ar)d\for, desigiti "\Th. W {
therapeutic means that selectively target
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